‏הצגת רשומות עם תוויות שאלות ותשובות. הצג את כל הרשומות
‏הצגת רשומות עם תוויות שאלות ותשובות. הצג את כל הרשומות

יום שבת, 25 בספטמבר 2010

איך נוצר הזמן?

את השאלה הזו שלח לי דוד כפרי:
שמי דוד כפרי ואני אחד המנויים על הבלוג שלך, קורא בעניין רב. למרות שאני חובב מדע (ומד"ב) מילדות, אני לא מדען ולא ממש מקפיד להתעדכן בחידושים האחרונים, ולפעמים קורה שמתקילים אותי בשאלה שאין לי מושג איך לענות עליה. כשהמתקיל הוא בן אחי, בן תשע וחושב שאני יודע הכל, זה מביך במיוחד. השאלה בכותרת - "איך נוצר הזמן?" - הפילה אותי לגמרי. התחלתי לגמגם משהו על חץ הזמן, תרמודינמיקה ואנטרופיה, אבל לשאלה איך הזמן נוצר - לא מצאתי תשובה, לפחות לא כזו שאדם שאינו פיזיקאי יוכל להבין...
דוד, אתה בחברה טובה. אני לא חושב שיש אדם שיוכל לתת תשובה חד-משמעית לשאלה שהציג האחיין שלך. אני נוהג להציג את השאלה הזו לתלמידי י"א-י"ב בפעילות שפיתחתי ואשר עוסקת בנושא הזמן. יחד איתה אני מציג שאלות קשורות: מתי נוצר הזמן? האם יש לזמן התחלה? האם יהיה לזמן סוף? אלו שאלות שתמיד מעוררות דיון ומגרות את המחשבה. לא אתיימר לספק כאן תשובה מוחלטת, אלא אסתפק בניסיון להעלות כמה כיוונים ואפשרויות.

ראשית יש לומר שתרבויות שונות מתייחסות לזמן באופן שונה, ובדרך שבה אנו תופסים את הזמן יש אלמנט תרבותי, אבל נדמה לי שבני כל התרבויות מסכימים על כך שזמן הוא מושג שריר וקיים. היחידים שמתנגדים לקיומו של מושג הזמן הם קומץ פילוסופים מבית מדרשו של ג'ון אליס מקטאגרט שפרסם ב-1908 חיבור בשם The unreality of time. מבלי להיכנס כאן לטיעונים של מקטאגרט, אומר שלדעתי פילוסופיה צריכה להסביר את מה שאנו חווים ולא להסביר למה מה שאנו חווים אינו קיים.

בהנחה שזמן הוא מושג מדעי שקיים ביקום שלנו, ניתן באופן תאורטי לחזור אחורה בזמן באמצעות חישובים ולבדוק אם הזמן החל בנקודה כלשהי או שהוא היה קיים תמיד. יש לנו ראיות רבות לכך שבראשיתו היה היקום קטן מאוד. זוהי תאוריית המפץ הגדול. הוקינג ופנרוז, שני פיזיקאים בריטים ידועים, הסיקו מתוך תורת היחסות שהמפץ הגדול חייב היה להתחיל בנקודה בודדת. כלומר מקורו של היקום המוכר לנו כיום מנקודה אחת. אין הכוונה לנקודה ביקום שניתן לאתר אותה, אלא לנקודה שהייתה כל היקום באותו רגע. כלומר, מקורו של כל דבר ביקום של היום באותה נקודה.

אם ראשיתו של היקום בנקודה, הרי שבה לא יכלו להתרחש מאורעות, ולכן לא ניתן להתייחס לזמן בעת שהיקום היה נקודתי. מובן שגם למרחב לא הייתה שם משמעות. לפי גישה זו המרחב והזמן נוצרו במפץ הגדול. רק חבל שהגישה הזו מתקשה להסביר איך נוצרו הזמן והמרחב, או במילים אחרות: מהם התנאים הדרושים ליצירתם? האם זו בריאה יש מאין?

למזלנו, אנחנו לא חייבים להתמודד עם השאלה הזו. תורת הקוונטים באה לעזרתנו. בתורת הקוונטים קיים עיקרון מרכזי שנקרא עקרון האי-ודאות, לפיו קיימת אי-ודאות במדידות מסוימות. שילוב מתוחכם של העיקרון הזה יחד עם תורת החורים השחורים נותן תובנות מעניינות לגבי הרציפות של הזמן והמרחב. כך למשל, מסתבר שלא ניתן להתייחס לזמנים קצרים מזמן קצרצר ומוגדר הקרוי זמן פלאנק. מדובר על פחות מ- שניות, וזה משך זמן הרבה יותר קצר מהדיוק שאנו יכולים לחלום עליו עם מכשירי המדידה של ימינו, אבל עדיין עצם המגבלה הוא עקרוני. בין היתר, המגבלה הזו קובעת שאין לנו אפשרות להתייחס למשך הזמן מרגע המפץ הגדול ועד לזמן פלאנק. כלומר, אפילו באופן תאורטי לא נוכל לדעת מה קרה שם. זו דרך אלגנטית להתחמק משאלת יצירת הזמן משום שאין משמעות פיזיקלית לאירועים שהתרחשו פחות מזמן פלאנק אחרי המפץ, ובעצם גם אין טעם להתעניין באירוע של המפץ הגדול עצמו.

אבל תורת הקוונטים פותחת גם פתח מעניין. באמצעות שילוב של תורת הקוונטים עם תורת היחסות הכללית של איינשטיין, דבר שעדיין לא השכלנו לעשות בהצלחה, ייתכן שנגיע למסקנה שהיקום לא חייב היה להיווצר בנקודה. ייתכן למשל שהוא התקיים במשך זמן אינסופי במצב זעיר, ואז, לפני כ-13.75 מיליארד שנה, החל לתפוח במהירות עצומה. ומה בקשר למשפט של הוקינג ופנרוז לגבי מקור היקום בנקודה? ובכן, המשפט נשען על תורת היחסות בלבד, והוא לא בהכרח תקף בתאוריה כללית יותר, שתורת היחסות מהווה רק קירוב שלה.

אפשרות אחרת, מעניינת במיוחד, מדברת על יקום מחזורי שעובר מחזורים של קריסה ומפץ גדול. במקרה כזה הזמן יכול להיות אינסופי לכל כיוון, או לכל הפחות הוא לא חייב להתחיל במפץ הגדול הנוכחי. כיום, ברור שהגרסה הפשוטה של המודל, שבה קיים יקום ארבע-ממדי אחד (ארבעת הממדים הם שלושת ממדי המרחב וממד הזמן) שקורס ונוצר מחדש איננה נכונה, משום שאנו רואים שהיקום שלנו מתפשט בקצב גדל והולך ולא נראה שהוא הולך לקרוס בעתיד. גרסאות מודרניות של המודל מתייחסות לקיומם של ממדים נוספים ולתהליך קריסה מורכב. זו תאוריה שניתן יהיה לבדוק אותה בעתיד הקרוב, משום שעדויות על הגלגולים הקודמים של היקום אמורים להימצא ביקום הנוכחי.

מכאן טבעי לעבור לעוד אפשרות אחת, קוסמת לא פחות. הבה נניח שאנחנו לא לבד, כלומר היקום שלנו אינו יחיד, אלא נמצא בתוך יקום גדול יותר. במקרה כזה יכול להיות שהזמן שלנו אכן החל במפץ הגדול, אבל זה קרה בגלל אירוע שהתרחש ביקום הרחב יותר, ואז יש גורם שבגללו נוצר הזמן שלנו. מהו אותו אירוע? קשה אפילו לנחש.

דוד, אני רואה שהגענו רחוק, תרתי משמע. לדעתי יש כאן מספיק חומר למחשבה לאחיין שלך, וגם בשבילי...



יום שישי, 24 בספטמבר 2010

שאלות בנושא גלי אור

שלוש שאלות בנושא גלי אור שקיבלתי במייל מדוד.

שאלה ראשונה - אני מבין שאומרים שאור מתנהג כמו גל ויש לו מספר תכונות של גל, אבל אני גם יודע שהאור שיוצא כרגע מהמסך אליך לעין לא באמת מבצע תנועה גלית, אז איך באה לידי ביטוי התנועה שלו והאורך גל? מה שונה בתנועת הפוטון של אור אדום והפוטון של אור סגול?

תשובה: גלי אור הם סוג של גלים אלקטרומגנטיים. אתה צודק - שלא כמו גלים במים, הגל האלקטרומגנטי אינו גורם לשינוי בתווך (החומר שבתוכו הוא נע). גל אלקטרומגנטי מתאפיין בשדה חשמלי ובשדה מגנטי מאונכים זה לזה שמשתנים באופן מחזורי. הגליות באה לידי ביטוי בשינוי של שני השדות הללו, ואורך הגל נמדד כמרחק שבו השדה החשמלי או השדה המגנטי משלימים מחזור אחד שלם. באיור הבא השדה החשמלי מיוצג על ידי החצים האדומים והשדה המגנטי על ידי החצים הכחולים.
קרינה אלקטרומגנטית

ההבדל בין אור אדום לאור סגול מתבטא בתדר שונה, כלומר קצב שינוי הגל בנקודה קבועה. התדר של האור הסגול גבוה יותר. האנרגיה של פוטון יחסית לתדר, ולכן האנרגיה של פוטון אור סגול גדולה יותר. העין מבדילה בין הצבעים באמצעות האנרגיה של הפוטונים הפוגעים בתאי הרשתית הרגישים לאור.


שאלה שנייה - אתמול בהרצאה (במסגרת "חכמים גם בלילה" במכון ויצמן) הסברת לי בקצרה על קרינה (קרינת גמא). אני יודע שקרינת אלפא היא בעצם קרינה של חלקיקים (גרעינים של הליום), וקרינת בטא פולטת אלקטרונים. מהי קרינת גמא, איך היא משפיעה ומה היא עושה?

תשובה: קרינת גמא היא סוג נוסף של קרינה אלקטרומגנטית. היא מתאפיינת בתדרים גבוהים מאוד, ועל כן הפוטונים של קרינת הגמא נושאים אנרגיה גדולה. קרינה זו, הנפלטת בדרך כלל מחומרים רדיואקטיביים, יכולה ליינן אטומים. לכן היא מסווגת כקרינה מייננת שעלולה לסכן חיים כאשר כמות גדולה של פוטונים כאלו פוגעים בגוף.


שאלה שלישית - טוענים שפוטון הוא נשא של כוח אלקטרומגנטי. כאשר אני מזרים זרם בתוך מוליך - האם זה אומר שיש פוטונים שמעבירים את האלקטרונים בין קליפה של אטום אחד לשני?
תשובה: אכן פוטונים הם נשאי הכוח האלקטרומגנטי, אך מדובר בפוטונים וירטואליים, כלומר כאלו שמתקיימים לזמן קצר ולא ניתן לגלות אותם. אנו יודעים שהם קיימים בזכות מכלול של תופעות המוסברות היטב בעזרתם. אני מקווה להרחיב על חלקיקים וירטואליים באחד הפוסטים הבאים.

יום שלישי, 22 בדצמבר 2009

שאלות ותשובות על אודות המאיץ

אני מצרף את כל השאלות שנשאלתי בעת האירוח בפורום מדע וחברה של גליליאו ואת התשובות שלי עליהן.

רון: אפשר לקבל תיאור בשפה (לא מקצועית) של הניסויים המתוכננים, והמטרות שלהם, כשתגיעה ההפעלה לרמת האנרגיה המלאה שהמאיץ יכול לספק? ובאופן ספציפי: עד כמה יסודיים החלקיקים אותם אפשר יהיה לייצר?  

תשובה: שלום רון, סביב נקודות ההתנגשות נבנו ארבעה גלאים ענקיים. שניים מהם ייחודיים למטרה מסוימת (אליס ו-LHCb) ושניים כלליים יותר (אטלס ו-CMS), כלומר ניתן לגלות בעזרתם כמעט כל מה שקיים עד מסה מסוימת.
בקרוב עומד להתפרסם בגליליאו חלקו השני של המאמר על המאיץ ובו תשובה מלאה לשאלתך. אביא כאן את ראשי הפרקים.
בנוסף לבדיקה חוזרת של ניסויים קודמים מקווים לגלות חמישה דברים:
  1. בוזון היגס שהוא חלקיק יסודי. זהו חלקיק מיוחד שיש לו אינטראקציה עם כל שאר החלקיקים ומכאן מגיעה חשיבותו. מעצם קיומו ניתן להבין את מהות המסה, המהווה מושג יסוד בפיזיקה.
  2. גילוי ראיות לתורת הסופר-סימטריה. הראיות הללו יהיו בדמות אוסף של חלקיקים חדשים, רובם לא יציבים.
  3. שחזור של מצב החומר שהתקיים רגעים ספורים אחרי המפץ הגדול, ובפרט גילוי מצב צבירה חדש הקרוי פלזמת קווארקים-גלואונים.
  4. יצירת אנטי-חומר במטרה לנסות להבין למה כמות החומר ביקום גדולה לאין שיעור מכמות האנטי-חומר.
  5. גילוי חלקיקים ועצמים "אקזוטיים", כמו למשל חורים שחורים זעירים.

רולי: היי אריה, נושא שלא ציפיתי שיעלה בהקשר של מאיץ החלקיקים הוא מסע בזמן - אבל דווקא זה הנושא שתפס כותרות בחודשים האחרונים יותר מקטסטרופות של חורים שחורים..
האם יש לך עמדה בנושא ההצעה שעלתה להסבר התקלות כ"תיקון עצמי" מן העתיד? - נושא ההשפעה של העתיד על העבר לעיתים עולה מכיוונים יותר מד"ביים אבל הפעם יש כמה פיסיקאים שקשורים בדיון..

תשובה: נעים להתארח אצלך :-) שאלה מעניינת. קראתי בעיון את המאמר והתייחסתי אליו באריכות בבלוג שלי. אביא כאן את סיכום הדברים מנקודת ראותי: אותם שני פיזיקאים שפרסמו את המאמר טוענים שיש אוסף לא סביר של תקלות המונעות גילוי חלקיקים חדשים, אך אני לא רואה אוסף כזה. מדובר בתקלות רגילות שמלוות כל פרויקט גדול. כמו כן, הם טוענים שהטבע מנסה למנוע את גילויו של בוזון היגס - איני רואה משהו מיוחד בחלקיק הזה. עד היום התגלו חלקיקים רבים ובוודאי רבים נוספים יתגלו בעתיד.
בנוסף לכך, השיטה שהם מציעים על מנת להחליט אם להמשיך את הניסוי - הגרלת מספרים אקראיים - אינה מובנת לי. למה שאותה יישות מסתורית (הטבע?) תבחר להתערב דווקא בהגרלת המספרים על מנת למנוע את המשך הניסוי? האם יש להם תקשורת כלשהי איתה? נקודה נוספת היא שהם לא מדברים בהכרח על השפעה מהעתיד אלא על קיומה של יישות-על שפועלת בהווה.
לסיכומו של דבר לא התרשמתי מהנימוקים שלהם, ולמרות שהנושא בכללותו מעניין, אני סבור שהוא אינו קשור לפיזיקה בשלב זה. אולי לפילוסופיה?

רולי: אני יותר המתארח מהמארח, אתה בפורום הרבה יותר זמן ממני..
אולי זו באמת שאלה פילוסופית, ושם נתקלים בכל מיני פרדוקסים מעניינים.

תשובה: לדעתי הפילוסופיה של מדעי הטבע לא עומדת בקצב הגילויים.
אולי העברה של נושאים פיזיקליים שעל גבול הפילוסופיה לטיפול המחלקות לפילוסופיה תסייע בהדבקת הפער ובו בזמן תניח לפיזיקאים להתעסק במה שהם טובים בו.
דוגמה שאני יכול לחשוב עליה עליה היא העיקרון האנתרופי שגוזל המון ויכוחים ודיונים בקהילה הפיזיקלית. לדעתי פילוסופים יוכלו לנתח את הסוגייה הזו טוב יותר.

אפרים: אבל חשבתי שחלקיק היגס כן חשוב, ואם חלקיק היגס הוא היושב בבסיס כל ההתנהגות של חלקיקים והכוחות ביניהם - אולי חשיפה שלו היא באמת מסוכנת?

תשובה: בוזון היגס בהחלט חשוב ואפילו יכול לשמש כהסבר בסיסי למהות מושג המסה, אך איני רואה במה הוא שונה מחלקיקים אחרים ולמה חשיפה שלו בניסוי עלולה להיות מסוכנת?
כרגע עדיין קשה לומר מה נעשה איתו כשנצליח לייצר אותו, והאם תהיה לו חשיבות תעשייתית או מסחרית. במבט היסטורי, נכון להיום, גילוי האלקטרון היה חשוב יותר.
נקודה נוספת היא שאם בוזון היגס קיים, הרי שהוא נוצר ונעלם באופן ספונטני בכל מקום ביקום, אפילו בריק. בוזוני היגס כאלו (שנקראים וירטואליים) הם אלו שאחראים למסה של כל החלקיקים. בניסוי המאיץ ינסו לייצר אותו באופן מבוקר, כך שניתן יהיה לגלות אותו באופן חד-משמעי.

יגאל: לאריה, קראתי את המאמר - תודה.
מה קורה עכשיו במאיץ?
האם יכול להיות שכבר נוצרו חורים שחורים או חלקיקים חדשים?

תשובה: שלום יגאל, כרגע המאיץ מושבת עקב פגרת חג המולד המסורתית...
התוכנית המקורית היא להשבית אותו במהלך כל חורף, כשצריכת החשמל באזור גבוהה וקשה לספק לו את החשמל הדרוש. הזמן הזה ינוצל בדרך כלל לתיקונים ושדרוגים.
בחורף הנוכחי, עקב התקלה של השנה שעברה, ההפסקה תהיה קצרה יחסית. הם מתכוונים להפעיל את המאיץ מחדש כבר בפברואר, אחרי שיכינו אותו לעבודה באנרגיה גבוהה יותר.
לדעתי לא נוצרו חלקיקים חדשים משום שטרם הגיעו לאנרגיה גבוהה. אומנם נקבע שיא עולמי, אך עדיין האנרגיה שהגיעו אליה לא גבוהה בצורה ניכרת מהאנרגיה של ההתנגשויות במאיץ הטווטרון האמריקני. את ההתנגשויות הללו (בטווטרון ) ניתחו במשך שנים ולא מצאו משהו חדש.
התוכנית היא להעלות במשך 2010 הן את האנרגיה של ההתנגשויות והן את הלומינוסיטי (luminosity) שזה בעצם גודל שקובע את כמות ההתנגשויות. פרטים טכניים על תוכנית העבודה ניתן למצוא בקישור הבא:
http://lhc-commissioning.web.cern.ch/lhc-commissioning/luminosity/09-10-lumi-estimate.htm

יגאל: מה החשיבות של הלומינוסיטי?

תשובה: כשיש יותר התנגשויות הסטטיסטיקה גדולה יותר, כך שיש סיכוי גדול יותר שיתרחשו אירועים נדירים, כמו יצירת חלקיקים חדשים.
בנוסף לכך: לעתים אירוע שנראה כמו יצירת חלקיק חדש אינו מספיק לקביעה שאכן נוצר חלקיק חדש, משום שייתכן שהאירוע הזה נובע מרעש רקע. במקרה הנוכחי תהליכים מוכרים יכולים להיחשב כרעש רקע. כשהסטטיסטיקה עולה (כמות אירועים גדולה) שגיאת המדידה היחסית יורדת, והביטחון בתוצאות עולה.

יגאל: האמת שפעם ראשונה שאני שומע את המושג הזה. איך מגדירים אותו?

תשובה: הלומינוסיטי היא גודל שמתאר את אלומות החלקיקים. היא תלויה בצפיפות החלקיקים בכל אלומה של פרוטונים, בכמות החלקיקים ובמהירות שלהם.
חלק קטן מאוד מהפרוטונים בכל אלומה עוברים אינטראקציה בעת מפגש של קבוצות פרוטונים זו עם זו. קצב התגובות בין הפרוטונים הוא מכפלה של הלומינוסיטי בחתך הפעולה.
הלומינוסיטי נקבעת על ידי ביצועי המאיץ, ואילו חתך הפעולה, שמתאר את ההסתברות לתגובה, נובע מהפיזיקה עצמה. אחת המדידות החשובות במאיץ תהיה מציאת חתך הפעולה של תהליכים מסוימים וחתך הפעולה הכללי של אינטראקציה כלשהי בין זוג פרוטונים שנעים אחד לעבר השני במהירות גבוהה.

סילבר: מה יקרה אם לא ימצאו כלום.....

תשובה: במחקר אומרים שגם תוצאה שלילית היא חשובה, אבל אני חושב שזה יהיה מאוד מאוד מאכזב...

אלי: איך אמורים החורים השחורים המיקרוסקופיים להתנהג? סדר הגודל שלהם הרי הרבה יותר קטן מזה של החלקיקים האלמנטריים?

תשובה: אין הסכמה לגבי הצורה הגאומטרית של החלקיקים היסודיים, דוגמת האלקטרון. ההתייחסות אליהם היא כאל עצמים נקודתיים. מבחינה זו החורים השחורים הזעירים גדולים יותר משום שיש להם רדיוס מוגדר. הרדיוס הזה קטן פי עשרת אלפים בערך מגודל של פרוטון (שהוא לא חלקיק יסוד).
משערים שהחורים השחורים הללו יתקיימו לזמן קצר מאוד, פחות ממיליארדית של מיליארדית שנייה והם יתפרקו לאוסף של חלקיקים אחרים. החלקיקים הללו ייקלטו בגלאים ובעזרתם ניתן יהיה לשחזר את המסה של העצם ממנו הם נוצרו. בדרך זו יהיה ניתן לגלות בקלות יחסית חורים שחורים לא יציבים.
אם החורים השחורים הללו היו יציבים, אז הם היו גדלים באטיות רבה. להערכתי חורים שחורים זעירים יציבים יכולים לבלוע כוכב תוך כמה מאות שנים. עצם העובדה שזה לא קרה בכדור הארץ (למרות שהוא מופצץ באופן קבוע על ידי קרינה קוסמית אנרגטית מאוד) או בכוכבים אחרים שאנו צופים עליהם היא אחת הראיות לכך שהחורים השחורים אינם יציבים.

רולי: האם ההתנגשויות באנרגיה המקסימלית של המאיץ יחשפו תהליכים המתרחשים בסדר גודל של זמן-פלנק ואורך-פלנק?

תשובה: כנראה שלא - זמן פלאנק ואורך פלאנק קצרים מדי.
מאידך, מסת פלאנק היא גודל שאולי יגיעו אליו. אומנם מסת הפלאנק כפי שהוגדרה על ידי מקס פלאנק עצמו גדולה מדי, אך אם מודל ADD (שצופה את אפשרות יצירתם של חורים שחורים זעירים במאיצי חלקיקים) נכון, אז מסת פלאנק הרבה יותר נמוכה, ובמקרה כזה ייתכן שניתן יהיה להגיע אליה.
אחד המחקרים המעניינים שעשיתי בדוקטורט היה פיתוח שיטה שתאפשר את מציאת מסת פלאנק בעזרת תוצרי התפרקות של חורים שחורים זעירים. אני מקווה שישתמשו בשיטה הזו, אבל קודם צריך לגלות חורים שחורים זעירים... 

סילבר: מה הגילוי הכי מפתיע שיכול להיות?

תשובה: הגילוי הכי מפתיע הוא משהו שלא חשבנו עליו :-) וזה בהחלט יכול לקרות.
מבין הדברים שחשבו עליהם בוזון היגס נחשב כהימור בטוח, כלומר הגילוי שלו לא יהיה מפתיע.
לעומת זאת גילוי החלקיקים הרבים שחוזה תורת הסופר-סימטריה יכול לפתוח אפיקי מחקר חדשים.
חורים שחורים זעירים הם בעיני רבים "הגביע הקדוש" של הניסוי. גילוי שלהם יאפשר צעד ראשון באיחוד של תורת הקוונטים עם תורת היחסות ובהבנה של מבנה המרחב בקנה מידה קטן. יכולים להיות להם גם שימושים בפועל - למשל בתור יצרני אנרגיה. מצד שני, יצירת חורים זעירים עלולה לסמל את סוף פיזיקת החלקיקים.

סילבר: למה זה יהיה סוף הפיזיקה של החלקיק?

תשובה: אם נגיע במאיץ לגודל הקרוי מסת פלאנק, אז לפי ההבנה שלנו כיום - עלייה באנרגיה במאיצים עתידיים תגרום ליצירה של חורים שחורים גדולים יותר ולא של חלקיקים אחרים.
כלומר, אנו נעבור מפיזיקת חלקיקים לפיזיקת חורים שחורים.

שרית: האם תקלה כמו זו שהתרחשה ב-2008 עלולה להתרחש שוב?

תשובה: אני לא חושב שתקלה כזו תחזור על עצמה משום שנעשו פעולות מנע רבות, הן באמצעות מערכות התראה והן באמצעות מערכת לשחרור לחצים. כזכור הנזק העיקרי נגרם מהליום נוזלי שהפך לגז בלחץ גבוה. הגז פגע במספר גדול של מגנטים. בנוסף לכך, נבדקו כל החיבורים החשמליים (התקלה נגרמה מניצוץ חשמלי במקום שהיה בו חיבור לא תקין), וכמובן - הוחלפו המגנטים הפגומים.
בנוסף לכך, המאיץ כבר עובד באופן כמעט מלא, כלומר כל החלקים שלו נוסו, ומחלות הילדות שמלוות כמעט כל מתקן גדול כבר כמעט מאחורינו.
אבל, כמובן, שתקלות, ואפילו תקלות גדולות וקטלניות, עלולות להתרחש. אף אחד לא חסין מפני כך. השאלה היא אם עשינו את כל מה שביכולתנו על מנת למנוע אותן. אין לי תשובה חד-משמעית על כך משום שאני לא מעורה בפעולות הבקרה שנעשות במאיץ באופן שוטף.
אני רק יכול לומר שניתן היה למנוע את התקלה הגדולה של 2008, משום שתרחיש כזה היה ידוע. להערכתי נעשו שם טעויות בתכנון ובבקרת האיכות.

שרית: אני מתנצלת מראש אם זה פוגע. האם אתה לא חושב שיש דרכים טובות יותר להשקיע את הכסף?

תשובה: שאלה מצוינת. לדעתי זה לא בזבוז כסף, ולו משום שכסף עודף אף פעם לא יילך למקום שצריכים אותו.
ולמה אני סבור שההשקעה במאיץ חשובה? יש כמה סיבות:
  1. הפרויקט סיפק ומספק הרבה מקומות עבודה, בעיקר לאנשים בעלי כישורים והשכלה.
  2. יש כאן שיתוף פעולה בינלאומי למטרות שלום - תופעה יוצאת דופן בימינו.
  3. פרויקט בעל חשיבות חינוכית, שמדגים לבני הנוער איך מדע עובד בפועל ובזמן אמת.
  4. פיתוח חלקי המאיץ הביא לקידום הטכנולוגיה והתעשייה במספר תחומים, כמו למשל על-מוליכים. להערכתי, זה תחום שיהיה רלוונטי לכולנו בעתיד. גם בתחום המחשוב הייתה התפתחות, למשל רשת הגריד (grid) שמאפשרת שיתוף ביכולת עיבוד ובזיכרון בין מחשבים בעולם כולו.
  5. הגילויים עשויים להביא ליישומים עתידיים, כפי שקרה בגילויים רבים אחרים שנבעו ממחקר בסיסי (למשל גילוי האלקטרון).
  6. נקודה אחרונה וחשובה נוגעת לדרך שבה מתקדמת האנושות. הייתי אומר זאת כך: "הסקרנות מניעה את האנושות". לא במקרה מדינות חזקות במדע טהור תמיד היו חזקות גם בתעשייה (למשל אנגליה של אמצע המאה ה-19). מדע טהור מתקדם יוצר אקלים חיובי לפיתוחים בתחומים אחרים, ובהקשר זה חשוב לדעתי שישראל תמשיך להשתייך למועדון היוקרתי של המדינות החברות בניסוי, גם אם זה כרוך בהשקעה כספית.

יום רביעי, 16 בדצמבר 2009

למה סביבון לא נופל?

גיל, חבר ותיק, שלח לי שאלה במייל:
לכבוד החנוכה, אולי תוכל להסביר בפשטות מדוע כשמסובבים סביבון הוא לא נופל? – הסבר שגם ילדים קטנים יבינו (וגם אני).
אפשר גם להעמיק לכיוון הגירוסקופ, יו-יו, כוח קוריוליס...
ובכן, השאלה הזו בכלל לא פשוטה - תנועה סיבובית היא אחד הנושאים המסובכים ביותר לתלמידי פיזיקה בתיכון. הסבר מצוין שמיועד לילדים מופיע בגיליון דצמבר 2009 של גליליאו צעיר במדור של בת-שבע וגון, אך התשובה המלאה די מורכבת. נדמה לי שעושים ניתוח מלא של תנועת סביבון בקורס מכניקה לתלמידי פיזיקה לתואר ראשון. אנסה בפוסט הזה לעשות משהו באמצע.

כשמסובבים סביבון אנו מעניקים לו תנע זוויתי. בדומה לתנע קווי, ניתן להתייחס לתנע זוויתי ככמות תנועה, אלא שכאן זו תנועה סיבובית, כלומר תנועה סביב ציר. במערכת סגורה, מבודדת בכל הנוגע לכניסה ויציאה של אנרגיה, התנע הזוויתי נשמר, ולכן בהיעדר הפסדי אנרגיה כתוצאה מחיכוך - הסביבון יסתובב לנצח. גודלו של התנע הזוויתי שווה למהירות הזוויתית (מהירות הסיבוב) מוכפלת במומנט ההתמד. מומנט ההתמד מאפיין את העצם והוא תלוי במסה שלו ובצורתו. למשל, ככל שהמסה של הסביבון מפוזרת יותר, כלומר הסביבון רחב יותר, כך מומנט ההתמד שלו גדול יותר, גם אם מסתו לא משתנה. האנרגיה הקינטית הסיבובית של הסביבון פרופורציונית למומנט ההתמד, ואם ניקח בחשבון שסביבון אמיתי מאבד אנרגיה עקב חיכוך, נגיע למסקנה שסביבון רחב צפוי להסתובב זמן רב יותר מסביבון צר.

לפני שאני ממשיך, סרטון נחמד של סביבון על סביבון שמצאתי ביוטיוב:



מה קורה מרגע שמשחררים את הסביבון מהיד?
בהתחלה, הוא מסתובב בתנועה מורכבת, שתלויה בצורה שבה שחררנו אותו, ואם המהירות הסיבובית גדולה דיה, הסביבון מתייצב תוך זמן קצר במצב כמעט אנכי. עם הזמן, המהירות הזו יורדת עקב הפסדי אנרגיה כתוצאה מחיכוך החלקה. ככל שהחוד של הסביבון דק יותר כך קטנים ההפסדים הללו, ולכן יש יתרון לסביבונים בעלי קצה חד. כשהמהירות יורדת, המצב היציב משתנה והסביבון מתחיל ליפול בגלל כוח הכובד. ניתן להתייחס לכוח הכובד כאילו הוא פועל על נקודה אחת - מרכז המסה של הסביבון. למעשה, בתנועה סיבובית אין חשיבות לכוחות, אלא למומנטים, וכאן נוצר מומנט כוח על נקודת הציר, כלומר על נקודת המגע עם המשטח. המומנט הזה יפיל סביבון שעומד במצב אנכי, בלי להסתובב, אבל ההשפעה שלו על סביבון מסתובב שונה - הוא גורם לשינוי של ציר הסיבוב. לתופעה הזו קוראים נקיפה או פרצסיה.

נקיפה היא מושג מסובך, ולדעתי קל יותר לחשוב עליו באנלוגיה לתנועה סיבובית רגילה. ניקח למשל לוויין שמקיף את כדור הארץ. אם הלוויין היה עומד במקומו, הוא היה נופל מטה עקב פעולת כוח הכובד של כדור הארץ. בעצם, המהירות ההתחלתית מאפשרת לו להישאר במסלול - כוח הכובד מושך את הלוויין לעבר כדור הארץ וכך משנה את כיוון תנועתו. השינוי הזה מתבטא כתנועה מעגלית במסלול. בצורה דומה, מומנט כוח הפועל על סביבון משנה את כיוון ציר הסיבוב וגורם לסביבון לבצע תנועת נקיפה שמורכבת מסיבוב סביב עצמו והקפה של הניצב היוצא מנקודת המגע שלו עם המשטח.

הדגמה יפה של נקיפה בעזרת גלגל אופניים, שמשמש כאן כגירוסקופ, ניתן לראות בסרטון הבא. כוח הכובד, שפועל על מרכז הגלגל, מפעיל מומנט על נקודת החיבור של הגלגל לחבל. המומנט גורם לשינוי מתמיד של ציר הסיבוב, כלומר עקב הסיבוב העצמי של הגלגל הוא לא נופל, אלא מבצע נקיפה:




על גירוסקופ, יו-יו וגם על כוח קוריוליס אני מבטיח להרחיב בפוסטים אחרים.

לקריאה נוספת:
The Motion of a Spinning Top באתר 4Physics
Precession of Spinning Top באתר HyperPhysics

יום רביעי, 28 באוקטובר 2009

על מתמטיקה, פיזיקה ופוליסמנטיות

לפני כארבעה שבועות כתבתי פוסט שעוסק במחשבות על פיזיקה, ובעקבות כך נשאלתי על ידי אחד הקוראים:
טענת כי הפיזיקה עתים מרובת משמעויות, ובעצם מושגים מסוימים הם מרובי משמעויות... אם הפיזיקה היא פוליסמנטית (רב-משמעית) הרי שהיא סותרת בכך את המתמטיקה. האם אתה מתנגד למתמטיקה כיסוד לפיסיקה?
אענה ואומר את דעתי בנושא. ראשית, אני רואה גם את המתמטיקה כפוליסמנטית במידה מסוימת. נכון שחישוב נותן בדרך כלל תוצאה אחת, אלא אם כן מדובר בפרדוקס הקשור בדרך כלל לפוליסמנטיות לשונית, וגם שיטת ההוכחה היא אמצעי חד-משמעי שנותן תשובה של כן או לא, אבל מצד שני יש במתמטיקה אפשרות בחירה. אפילו פעולות חישוב בסיסיות הן רב-משמעיות. כך למשל, פעולת חיסור יכולה להתייחס לכמה סוגי בעיות, כמו גריעה של איברים מקבוצה והשוואה בין שתי קבוצות ("בכמה קבוצה אחת גדולה מרעותה?"). אני בעצמי הופתעתי לא מזמן לגלות עד כמה המשמעויות הללו של חיסור שונות זו מזו וקשות להבנה עבור ילדים קטנים שמופתעים כשהם רואים שניתן לפתור שני סוגי בעיות בעזרת אותה פעולה. גם למושגים מורכבים יותר, כמו נגזרת ואינטגרל, יש במקרים רבים מספר משמעויות. ובכיוון אחר ובסיסי לא פחות: הבסיס האקסיומטי של תורות מתמטיות אינו חד-משמעי. קורט גדל הוכיח שעבור תורות מתמטיות אקסיומטיות מסוימות קיימת תמיד טענה אחת לפחות שלא ניתן להוכיח באמצעות האקסיומות וגם לא ניתן להפריך אותה בעזרתן. במילים אחרות, קיים חופש בבחירת מערכת אקסיומות שתתאר את אותה תורה מתמטית, מה שמצביע על רב-משמעות בניסוח הבסיס של אותה תורה.

כעת, לשאלת הפוליסמנטיות בפיזיקה. אני רואה בפיזיקה מידה לא מועטה של פוליסמנטיות. ראשית, ההסבר לתופעות יכול להתבסס על תורות פיזיקליות שונות ואפילו במסגרת אותה תורה פיזיקלית ייתכן שההסבר מבוסס על מושגים שונים. כדוגמה אביא את תופעת פליטת הקרינה על ידי חלקיקים מואצים, Bremsstralung, שניתן להסביר אותה, מטבע הדברים, בעזרת תורת הקוונטים שעוסקת בעולם המיקרו, אבל למרבה הפלא גם בלעדיה. גם מושגים בסיסיים, כמו מסה, מוגדרים בצורה שונה בהתאם לשימוש שנעשה בהם. ואם לפרט מעט: שני סוגי מסה מופיעים בעבודתו של ניוטון - מסה אינרציאלית בחוק השני ומסה כבידתית בחוק הכבידה. קיימת זהות בין שתי המסות הללו, כלומר יש לנו כבר שתי הגדרות למסה. בתורת היחסות של איינשטיין המסה מתקשרת לאנרגיה, ואילו במודל הסטנדרטי של החלקיקים מקורה של מסת חלקיק בעוצמת האינטראקציה שלו עם שדה ההיגס.

נקודת הסתייגות אחת: הפוליסמנטיות שמופיעה במדע היא מוגבלת, לפחות בכך שהיא צריכה להתיישב עם הלוגיקה, כלומר צריך שיהיה קשר בין הסברים שונים, ואם קיימות סתירות, מדענים מנסים ליישב אותן. מצב שבו יש משמעויות מנוגדות לתופעה אחת הוא מצב לא יציב, וקיים ניסיון מתמיד ליישב סתירות כך שהסברים שונים יחיו בשלום זה לצד זה. כך למשל, הסתירות שיש לכאורה בין תורת הקוונטים לתורת היחסות מעודדות את הפיזיקאים לנסח תורה שתוכל ליישב ביניהן.

מבחינת שאלת הקשר בין פיזיקה למתמטיקה, אני לא חושב שפיזיקה מבוססת על מתמטיקה. אני סבור שעבור פיזיקאים מתמטיקה היא כלי שמסייע בהתמודדות עם בעיות פיזיקליות ומאפשר ניתוח כמותי של גדלים והערכה כמותית של תוצאות ניסויים. ניתן לומר, אפילו, שלעתים שיטות מתמטיות מאפשרות את התפתחותה של הפיזיקה לכיוונים חדשים, ולעתים שני התחומים מתקדמים במקביל. כך למשל, חשבון וריאציות, שהוא שיטה לפתרון של בעיות מינימום ומקסימום, אפשר את התפתחותה של המכניקה מענף שניתן לכמת אותו בעזרת משוואות של כוחות לענף שבבסיסו משוואות של גדלים לא-וקטוריים (לגרנז'יאן והמילטוניאן). הגדלים הללו תפסו מקום גם בפיזיקה המודרנית של המאה ה-20, וליתר דיוק בתורת הקוונטים ובתחומים המבוססים עליה. דוגמה נוספת היא החשבון הדיפרנציאלי והאינטגרלי שפותח על ידי ניוטון ולייבניץ במקביל לעבודתו של ניוטון על יסודות המכניקה, ושני התחומים השפיעו האחד על השני.

יחד עם זאת, אני רואה את הבסיס לפיזיקה בהסברים האיכותיים לתופעות ולא בהסברים הכמותיים. המתמטיקה יכולה לתת תשובה כמותית, אבל בדרך כלל אין לה אפשרות להסביר "למה?" או להוביל לפיתוח תחום פיזיקלי חדש לגמרי. לדעתי, הדבר נובע מכך שהמתמטיקה מאפשרת חופש רב מאוד, ואילו הפיזיקה מוגבלת על ידי תופעות הטבע ותוצאות הניסוי, ועל כן הפיזיקאים צריכים לברור בקפידה את הכלים המתמטיים שבהם הם משתמשים ולבסס את עבודתם על תוצאות ניסויים ועל הבנה איכותית של תהליכים ותופעות.

יום שלישי, 15 בספטמבר 2009

האם שימוש בחמצן טהור מסוכן לגוף?

חוב שאני חייב לשרון בריזינוב, קורא ותיק של "מדע פשוט". שרון שואל:
האם שימוש ממושך ב-100% חמצן מסוכן למערכות הגוף? אם כן למה?
התשובה היא שנשימה של חמצן טהור אינה מסוכנת, ולראיה זה הטיפול המקובל בבתי חולים במקרה של קושי נשימתי חמור. עם זאת, יש כיום ביקורת על השימוש בחמצן טהור כטיפול לבעיות נשימה. התברר במחקר משנת 2007 שבעצם לחמצן טהור עלולה להיות השפעה הפוכה. בדיקת fMRI הראתה שהוא מעורר פעילות יתר במספר חלקים במוח, פעילות שגורמת להיפותלמוס להפריש כמות גדולה של הורמונים לדם. ההורמונים הללו דווקא פוגעים ביכולת הלב להזרים דם לגוף. על כן, החוקרים מציעים שימוש בתערובת של 5% פחמן דו-חמצני ו-95% חמצן.
 
אגב, חמצן עלול להיות מסוכן אם הלחץ שלו גבוה. נשימה של חמצן בלחץ של יותר מ-1.6 אטמוספירות עלולה לגרום למוות. למצב הזה קוראים הרעלת חמצן. הנזק יכול להתבטא במספר אופנים: נזק למערכת העצבים המרכזית, לריאות ולעיניים. האוויר מכיל כ-21% חמצן, כלומר הלחץ החלקי של החמצן הוא כחמישית אטמוספירה, וזה אומר, כצפוי, שהחמצן באוויר אינו מסוכן בכל הנוגע להרעלת חמצן. גם חמצן טהור אינו מסוכן בהיבט זה משום שהוא מכיל חמצן בלחץ של אטמוספירה אחת. לעומת זאת, נשימה ישירות מבלון של חמצן דחוס עלולה להיות קטלנית.
הנושא של הרעלת חמצן נלקח בחשבון, כמובן, בספורט הצלילה. עם הירידה לעומק גדל הלחץ של הגז הנכנס מהבלון לגוף, ולכן לכל סוג של בלון מוגדר עומק צלילה מקסימלי. כך למשל, שימוש בבלון שמכיל חמצן טהור מותר עד לעומק של שישה מטרים בלבד. לעומת זאת, בלון ניטרוקס-36 שמכיל 36% חמצן (מבחינת נפח) והיתר חנקן בטיחותי לשימוש עד לעומק של 29 מטר, משום שבעומק רב יותר הלחץ החלקי של החמצן גדול מ-1.4 אטמוספירות וקיימת סכנה של הרעלת חמצן. מי שרוצה לצלול עמוק יותר צריך להשתמש בתערובת שמכילה פחות חמצן, אבל כעת מתחילה להתעורר בעיה נוספת - הרעלת חנקן. לכן עדיף להשתמש בתערובת אחרת שמכילה הליום במקום חנקן. תערובת זו קרויה טרימיקס אם היא מכילה חמצן, חנקן והליום או הליוקס במקרה שכל החנקן הוחלף בהליום. הורדת כמות החמצן בתערובת מאפשרת ירידה לעומק רב עוד יותר - אפילו יותר מ-100 מטר, אבל כל זה מחייב כמובן אימון מיוחד.

בכל אופן, למי שבריא ולא נמצא כעת בצלילה אין סיבה לנשום אוויר מועשר בחמצן. בהקשר זה, הטרנד החדש של טיפול בחמצן, המוכר גם בשם בר חמצן, הוא בעיני בזבוז כסף, ותו לא. משהו כמו בקבוק אוויר בשקל:

יום רביעי, 9 בספטמבר 2009

האם אכילת גיר מעלה את החום?

לא יודע אם זה קשור לפתיחת שנת הלימודים, אבל אתמול קיבלתי במייל שאלה שהחזירה אותי לימי בית הספר:
האם אכילה של גיר יכולה להעלות את החום שלי לכמה שעות?
בעצם, גם בצבא שמעתי שגיר מעלה את טמפרטורת הגוף, אבל לא זכור לי שראיתי מישהו בודק את זה וממש אוכל גיר בשביל להוציא גימלים. אני די משוכנע שזה מיתוס, ולו משום שאני לא רואה סיבה לכך שגיר יעלה את טמפרטורת הגוף. זה נראה לי ממש לא הגיוני. גיר עשוי מקירטון שמכיל סידן או מגבס שמכיל סידן וגפרית. הגוף לא זקוק לכמות גדולה של החומרים הללו, ולכן אכילה של גיר אינה בריאה. מה עוד שבתהליך הייצור של גיר אין הקפדה על ההרכב המדויק, וכמויות קטנות של חומרים נוספים, בחלקם רעילים, עלולות להיכנס לתוך המוצר הסופי. אבל גם אם זה לא בריא, אני לא רואה סיבה לעליית חום, שקשורה בדרך כלל למחלות זיהומיות. אם כבר, הייתי מצפה שאכילת כמות גדולה של גיר בבת אחת תגרום להקאה, ואכילה מתמדת לאורך זמן תגרום להרעלה.

מתברר שבכל זאת יש אנשים שאוכלים גיר, מסיבות אחרות. לתופעה הזו של אכילת חומרים בלתי-אכילים קוראים תסמונת פיקה, והיא עלולה להיות מסוכנת במקרים מסוימים. מדובר בתופעה לא כל כך נדירה, אבל הסיבה המדויקת טרם התגלתה - ייתכן שהיא נובעת ממחסור במינרלים וייתכן שמדובר בהפרעה פסיכולוגית, כלומר צורה של התנהגות כפייתית הנובעת ממחשבות טורדניות. בעבר נטו לחשוב שתסמונת פיקה נובעת רק ממחסור במינרלים, אבל בשנים האחרונות הגישה השתנתה בעקבות מספר מקרים שבהם טיפול בעזרת תרופות פסיכיאטריות בחולי תסמונת פיקה הצליח, כמו במקרה של נערה באתיופיה שנהגה לאכול במשך שנים את קיר ביתה העשוי מבוץ. בעקבות כך, חושבים כיום שלפחות בחלק מהמקרים התסמונת אכן מהווה צורה של הפרעה טורדנית-כפייתית.

דרך אגב, המאכל הלא-אכיל הנפוץ ביותר בקרב הלוקים בתסמונת פיקה הוא אדמה, ונשים בהיריון לוקות בתסמונת יותר ממבוגרים אחרים (בערך אחת מתוך שתים עשרה נשים בהיריון). מעניין מה הסיבה לכך? נקודה מעניינת נוספת היא שאחוז הלוקים בתסמונת פיקה גבוה יותר, ככל הנראה, במדינות לא מפותחות, וזה מצביע דווקא על מחסור במינרלים כסיבה אפשרית.

יום רביעי, 15 ביולי 2009

מה מחזיק את האקסוספירה?

שאלה נוספת של שרון בריזינוב, קורא של הבלוג:
מה גורם לגזים בשכבות האקסוספירה להישאר צמודים לכדור הארץ? למה הגזים בשכבות אלו לא מתפשטים לעבר החלל ?
האקסוספירה, שמתחילה בגובה של כ-500 ק"מ, היא השכבה החיצונית של האטמוספירה. זאת שכבה דלילה של חלקיקים ומולקולות ששייכים לאטמוספירה, כלומר הם מוחזקים על ידי כוחות שמקורם בכדור הארץ. קשה להגדיר במדויק את הגבול בין האקסוספירה ובין החלל החיצון - מדובר על סדר גודל של עשרות אלפי ק"מ מפני כדור הארץ, כלומר זו שכבה עבה ביותר.

חללית אספקה שעזבה את תחנת החלל הבינלאומית. צבען של השכבות התחתונות של האטמוספירה הוא כחול, ואילו השכבות העליונות כולל האקסוספירה שחורות. תחנת החלל משייטת בתרמוספירה, מתחת לאקסוספירה. מקור לתמונה: NASA.

התשובה לשאלה של שרון היא שהאקסוספירה, כמו שאר חלקי האטמוספירה, לא מתנתקת מכדור הארץ בגלל כוח הכבידה של כדור הארץ שפועל על הגזים באטמוספירה. עקב עקרון ארכימדס (עקרון הציפה), הגזים הקלים, בעיקר מימן והליום, צפים מעלה ומאכלסים את האקסוספירה הדלילה. גזים כבדים יותר שוקעים מטה וממלאים את השכבות הנמוכות של האטמוספירה.

מהירות הבריחה של מולקולות הגז באקסוספירה נמוכה יחסית, מה עוד שכמות המולקולות שם נמוכה ולכן יש מעט התנגשויות. זו הסיבה לכך שמולקולות אכן בורחות בקצב נמוך מהאקסוספירה לחלל החיצון, וזה בעצם ההסבר לכך שכמות המימן וההליום באטמוספירה נמוכה מאוד. בעבר הרחוק של כדור הארץ הכמות שלהם הייתה הרבה יותר גדולה.

עקב הצפיפות הנמוכה של הגז, האקסוספירה לא מפזרת את אור השמש כמו השכבות הנמוכות של האטמוספירה (פיזור ריילי שגורם לשמים להיראות כחולים) ונראית שחורה. אך ניתן לצפות בה בדרך אחרת. אטומי המימן מחזירים אור על-סגול שמקורו בשמש. את התופעה הזו, הקרויה גיאוקורונה (Geocorona), ניתן לראות מהחלל באמצעות מכשור רגיש לאור על-סגול.

תופעות נוספות המתרחשות באקסוספירה קשורות לשדה המגנטי של כדור הארץ, שבכוחו להחזיק חלקיקים טעונים במרחק די גדול מפני כדור הארץ. מקורם של אותם חלקיקים טעונים, בעיקר פרוטונים ואלקטרונים, ברוח השמש וביונוספירה של כדור הארץ (אחת השכבות של האטמוספירה). החלקיקים הטעונים נלכדים באזורים רחבים באקסוספירה הקרויים חגורות קרינה או חגורות ואן אלן. בהקשר זה קיימת חפיפה בין האקסוספירה שמקורה בפעולת הכבידה של כדור הארץ ובין המגנטוספירה שמקורה בשדה המגנטי של כדור הארץ ובאינטראקציה שלו עם רוח השמש.

יום ראשון, 12 ביולי 2009

מה המקור לחוק השני של התרמודינמיקה?

שרון בריזינוב, קורא של הבלוג, שלח לי שלוש שאלות במייל. השאלות עוסקות בנושאים שונים ואשתדל להקדיש לכל אחת פוסט נפרד. השאלה הראשונה מתייחסת לסוגייה פיזיקלית חשובה:
מדוע החוק השני של התרמודנמיקה מתקיים? מהו הגורם לחום לזרום למקומות קרים יותר?
לפני שאני נכנס לעומק הנושא אעיר שבעיני החוק השני של התרמודינמיקה הוא אחד החוקים הפיזיקליים החשובים והמרכזיים. יש לו חשיבות היסטורית בהתפתחות המדע ויש לו גם חשיבות מעשית ויישומית. למעשה, אנו נוכחים בחוק השני בחלק גדול מהפעולות היומיומיות, למשל בתהליכים של מעבר חום, בעת ערבוב של חומרים ובתגובות כימיות. אגב, המטבח הביתי הוא מעבדת ניסויים מעולה לבדיקת החוק השני של התרמודינמיקה על מרבית היבטיו.

אז מהו בעצם החוק השני של התרמודינמיקה? בואו נחשוב על ניסוי פשוט: אנו מציבים ספל קפה חם בחדר. כעבור כמה דקות הקפה מתקרר. התהליך ההפוך, שבו קפה יתחמם בעצמו מעל טמפרטורת החדר איננו הגיוני. בשפה מדעית ניתן לנסח זאת כך: אנרגיה עוברת באופן ספונטני מעצם חם לעצם קר. מעבר האנרגיה הזה מכונה זרימת חום. אם רוצים להפוך את כיוון זרימת החום יש להשקיע אנרגיה ממקור חיצוני, ואז זו כבר לא "זרימת חום ספונטנית". זרימת חום הפוכה מתרחשת למשל במקרר ובמזגן, ואלו הם, כידוע, צרכני אנרגיה.

בעת שהקפה התקרר, הספל והאוויר ליד הספל התחממו ובסופו של דבר המערכת שלנו הגיעה לשיווי משקל. אפשר לחשוב על ניסוי נוסף שממחיש את החוק השני: אנו מוסיפים לקפה מעט חלב. החלב, שמרוכז תחילה באזור קטן בחלק העליון של הספל, מתערבב בתוך הקפה, עד שמתקבלת תערובת אחידה שלא תיפרד למרכיביה ללא התערבות חיצונית. ניתן לראות את הדמיון בין שתי הדוגמאות - בשתיהן המערכת מתקרבת למצב של שיווי משקל, ולא ניתן לחזור משיווי המשקל למצב ההתחלתי ללא השקעה של אנרגיה.

את התוצאה הזו ניתן לנסח בצורה פשוטה בעזרת מושג האנטרופיה. אנטרופיה היא בעצם מידת הקרבה של המערכת לשיווי משקל. כשהמערכת קרובה לשיווי משקל, כבר לא נוכל להפיק ממנה עבודה מכנית באופן ספונטני, ולכן לאנטרופיה גבוהה יש משמעות נוספת: נשארה מעט אנרגיה זמינה לביצוע עבודה. בעזרת מושג האנטרופיה ניתן לנסח את החוק השני בצורה פשוטה ומרשימה: האנטרופיה הכללית של מערכת לעולם לא יורדת.

לודוויג בולצמן, אחד הפיזיקאים הגדולים בהיסטוריה, נתן פירוש נוסף למושג האנטרופיה. הוא הציע להתבונן בכל מערכת מקרו (למשל ספל עם קפה) כאוסף של המון מצבי מיקרו (מצבי המולקולות). האנטרופיה, לפי בולצמן, היא בעצם כמות מצבי המיקרו שנותנת את אותו מקרו. המצב שבו החלב מעורבב בתוך הקפה יכול להתקבל על ידי הרבה יותר מצבי מיקרו. אפשר לחשוב על זה כך: למולקולות החלב יש יותר מקומות שהן יכולות להימצא בהם מבלי שנרגיש בחוסר אחידות של התערובת. הן יכולות לנוע לכיוונים שונים, אבל התערובת תישאר אחידה. ליתר דיוק, התערובת תישאר אחידה בהסתברות גבוהה מאוד, משום שייתכן מצב שבו כל מולקולות החלב ינועו באופן מקרי לעבר אזור קטן בתוך הקפה. באופן מעשי ההסתברות שמצב כזה יתרחש היא אפסית וניתן להזניח אותה, ובכל זאת היא קיימת, כלומר החוק השני של התרמודינמיקה איננו חוק שמתרחש תמיד אלא הוא מתרחש בהסתברות גבוהה מאוד מאוד.

הפירוש ההסתברותי של האנטרופיה מאפשר לנו להבין למה החוק השני מתקיים. לפי הפירוש הזה, החוק השני אומר שלמערכת יש הסתברות גבוהה יותר להימצא בשיווי משקל, וההתקדמות שלה לעבר שיווי המשקל לוקחת אותה ממצב בעל הסתברות נמוכה למצב בעל הסתברות גבוהה. בפרט, הפירוש ההסתברותי מאפשר לנו לחשב מה קורה כשעצם קר נוגע בעצם חם - המערכת תעבור למצב בעל הסתברות גבוהה יותר. לעצם קר אנטרופיה נמוכה משום שהמשמעות של טמפרטורה נמוכה היא שכל המולקולות נמצאות כמעט במנוחה, לכן אין הרבה צירופים של מצבי מיקרו לתאר את המערכת. ככל שהעצם חם יותר, כך האנטרופיה שלו גבוהה יותר. חישוב מדויק מראה שהעלייה באנטרופיה של עצם שמתחמם גדולה מהירידה באנטרופיה של עצם שמתקרר, ולכן למצב שיווי המשקל, שבו שני העצמים הגיעו לאותה טמפרטורת ביניים, יש אנטרופיה גבוהה מאשר למצב ההתחלתי. כך, החוק השני יחד עם חוק שימור האנרגיה, שמגביל את כמות החום שעוברת בין העצמים, קובעים את ההתנהגות של המערכת.

כאן ראוי להעיר שהחוק השני מאפשר לנו להבדיל בין עבר לעתיד או לקבוע "חץ זמן". נניח שאנו רוצים להגדיר בצורה מדעית את ההבדל בין עבר לעתיד. כל מה שצריך לעשות זה למדוד את האנטרופיה במערכת סגורה. אם האנטרופיה בזמן א' קטנה מהאנטרופיה בזמן ב' סימן שזמן ב' הוא אחרי זמן א'.

כעת אני רוצה לעסוק בהיבט נוסף בשאלה של שרון: מה הסיבה לקיומו של חץ הזמן התרמודינמי? כלומר, מה הסיבה לחוק השני של התרמודינמיקה?

ייתכן כמובן שהחוק השני הוא בסיסי ואיננו מבוסס על עקרונות פיזיקליים אחרים. אני דווקא אוהב את האפשרות הזו, אבל אני נמצא כאן בדעת מיעוט. מרבית החוקרים שעוסקים בנושא סבורים שיש מקור לחוק השני. הסבר די נפוץ לחוק השני מניח שבעבר הרחוק האנטרופיה של היקום הייתה קטנה מאוד. אם היא הייתה כה קטנה בעבר, אז סביר להניח שהיא תגדל עם הזמן. זה הסבר טוב, שמסתדר יפה עם תאוריית המפץ הגדול, אבל יש לו חיסרון מרכזי: הוא דן ביקום כולו ולא עוסק בניסויים קטנים ופשוטים, כמו הניסוי עם הקפה. הקשר בין הגידול באנטרופיה הכללית של היקום לגידול באנטרופיה של ספל קפה שהוספנו לו חלב אינו ברור כל כך.

רבים חושבים שיש הסבר קוסמולוגי לחוק השני, פשוט משום שגם שם יש חץ זמן בולט: היקום מתרחב עם הזמן. הרעיון הכללי הוא לבחון מודלים קוסמולוגיים שונים ולבדוק אם הם צופים עלייה באנטרופיה עם הזמן. קיימים גם ניסיונות לקשר את החוק השני לאחד מחצי הזמן המוכרים האחרים (עוד על כך בקישור למטה), אך נכון להיום לא הושגה הסכמה בנושא, כך שגם אם יש סיבה לחוק השני, הרי שהיא טרם התגלתה. נראה לי שזו נקודה טובה לסיים וללכת לשתות קפה הפוך, שלא היה יכול להיות טעים כל כך לולא החוק השני של התרמודינמיקה...

להרחבה אני ממליץ על המאמר המצוין של האנציקלופדיה לפילוסופיה של סטנפורד: Thermodynamic Asymmetry in Time

יום ראשון, 12 באפריל 2009

המאיץ בשווייץ - האם זה מסוכן?

בתגובה לפוסט הקודם אודות חורים שחורים נשאלתי אם יכולים להיווצר במאיץ LHC חורים שחורים שיסכנו את כדור הארץ. זו שאלה מעניינת שזכתה לתשומת לב בדיווחים בתקשורת אודות הפעלת המאיץ, ובמידה מסוימת אפילו תרמה לעניין הציבורי בניסוי. ראשית יש לומר שמאיץ LHC אכן יכול להפוך ל"בית חרושת" לחורים שחורים זעירים (קרויים גם חורים שחורים מיניאטוריים או חורים שחורים קוונטיים), שגודלם קטן פי עשרת אלפים לערך מגודלו של פרוטון, אבל רק בתנאי שהתאוריה החוזה את קיומם של חורים שחורים כה קטנים אכן נכונה. יש לציין שכיום אין ראיות לנכונותה של תאוריה זו (תאוריה של ממדים נוספים גדולים - Large Extra Dimensions). אחד הניבויים של התאוריה נוגע למסה המינימלית של חורים שחורים. גודלה, על פי הוגי התאוריה, נמוך באופן משמעותי ממה שחשבנו עד כה, ואם אכן כך הדבר אז ייתכן שהאנרגיה במאיץ LHC תספיק ליצירת חורים שחורים זעירים. אנרגיה שקולה למסה, ולכן האנרגיה בהתנגשויות הפרוטונים במאיץ יכולה להפוך למסה של חלקיק חדש, ולצורך העניין של חור שחור.

שאלת הסיכונים סקרנה אותי עוד כשהתחלתי את המחקר שלי במכון ויצמן אודות אפשרות יצירת חורים שחורים במאיץ LHC, אבל התעמקתי בה ברצינות רק כשכתבתי מאמר לגליליאו על אודות חורים שחורים זעירים. הסוגיה נדונה גם בבתי משפט, שהתקשו לגבש עמדה בנושא. התקשורת העולמית כמעט שלא ניתחה את הנושא ברצינות, ובמקרה מצער אחד ידוע שהדיווחים הדרמטיים גרמו לילדה בהודו לשלוח יד בנפשה. הסיכום הטוב ביותר של החששות מפני הפעלת המאיץ נמצא באתר אינטרנט ותיק שמציג את הטענות בצורה עניינית והוגנת. זה המקום להעיר שהמאיץ החל לעבוד ב-2008, אבל תקלה חמורה גרמה להשבתתו לשנה לפחות, כך שהתנגשויות בין פרוטונים טרם נערכו, כלומר חורים שחורים זעירים טרם נוצרו בניסוי. הניסוי עצמו צפוי להימשך שש שנים לפחות.

בחזרה לשאלה המקורית: האם זה מסוכן?
התשובה היא כן! אבל רק אם החורים השחורים יציבים.
חור שחור יציב שייווצר במהירות נמוכה מאוד עלול להיעצר ולנוע לאיטו למרכז כדור הארץ. שם הוא יתחיל לצבור מסה באיטיות. הכבידה היא כוח חלש ועל כן יעבור זמן רב (סדר גודל של מאות שנים או יותר) עד שהחור השחור יגיע לגודל של עשרות קילומטרים ויתחיל להוות סכנה לכדור הארץ. אם הוא יציב, התסריט המפחיד הזה יתרחש בסופו של דבר. יש להעיר שאם אכן ייווצרו חורים שחורים זעירים במאיץ, הרי שברוב ההתנגשויות המהירות שלהם תהיה גדולה והם לא ייעצרו בכדור הארץ. אולם, מהירות זו היא גודל אקראי שאינו ניתן לקביעה מראש, ולכן בחלק קטן מההתנגשויות היא תהיה נמוכה דיה ואפילו אפסית.

ובכל זאת, קיים קונצנזוס בקרב המדענים על כך שאין סכנה בהפעלת המאיץ. המסקנה מבוססת על מחקר תאורטי שערכה קבוצת פיזיקאים מוכרים ומובילים בעולם. קיימים שלושה טיעונים מרכזיים לכך שחורים שחורים זעירים הם קצרי חיים:
  1. חורים שחורים דועכים באמצעות קרינת הוקינג-בקנשטיין. קרינה זו טרם נצפתה, אבל התחזית בדבר קיומה מבוססת על תורת הקוונטים (ליתר דיוק: תורת השדות הקוונטיים), תורה מדויקת להפליא, שטרם נכשלה באף ניסוי. הפיתוח של הוקינג ובקנשטיין מאפשר את קביעת עצמת הקרינה בתלות בגודל החור השחור. העצמה גדלה ככל שהחור השחור קטן יותר, ועבור חורים שחורים זעירים, קטנים מגודלו של פרוטון, היא צפויה לגרום להתפרקותם המיידית תוך חלקיק שנייה. חורים שחורים בגודל כוכב, לעומת זאת, פולטים קרינה חלשה מאוד, ולכן קשה כל כך לגלות אותה באמצעים אסטרונומיים. כזכור, חורים שחורים זעירים הם עצמים היפותטיים שטרם נצפו מעולם, ולכן גם התחזיות לגבי קיומה של קרינת הוקינג טרם זכו לאישוש ישיר.
  2. האנרגיה של ההתנגשויות במאיץ LHC תהיה גדולה מזו שנוצרה בניסויים קודמים, אבל קרינה קוסמית שפוגעת בכדור הארץ באופן קבוע מכילה חלקיקים שחלקם הרבה יותר אנרגטיים. אם האנרגיה במאיץ LHC תספיק ליצירת חורים שחורים זעירים, קל וחומר שהם נוצרים כל הזמן כתוצאה מפגיעת הקרינה הקוסמית באטמוספירת כדור הארץ. יש לציין שמהירותם של חורים שחורים זעירים שנוצרים על ידי קרינה קוסמית תמיד גבוהה, וזאת בניגוד לחורים שחורים זעירים שנוצרים במאיצי חלקיקים. בכל מקרה, ניתן להעריך את מידת יציבותם של החורים השחורים שנוצרים על ידי קרינה קוסמית. אם החורים השחורים טעונים במטען חשמלי הם ייעצרו על ידי כדור הארץ כתוצאה מהאינטראקציה החשמלית החזקה. עצם קיומנו מוכיח בוודאות שכדור הארץ שרד, כלומר חורים שחורים כאלו, אם הם קיימים, בהכרח אינם יציבים. לעומת זאת, חורים שחורים לא טעונים מהירים לא ייעצרו על ידי כדור הארץ ויחלפו דרכו. מצד שני, גופים דחוסים יותר, דוגמת ננסים לבנים וכוכבי נייטרונים, אמורים לעצור גם חורים שחורים זעירים לא טעונים. ניתן להעריך את אורך חייהם של כוכבים כאלו על סמך תצפיות, וברור שגם הם שרדו זמן רב ולא התפרקו על ידי חור שחור שהתיישב בתוכם. אם כך, גם חורים שחורים לא טעונים הם ככל הנראה עצמים לא יציבים.
  3. בפיזיקה מודרנית קיים כלל שאומר כי כל תהליך שאינו סותר חוק שימור - יתרחש. ידוע לנו שאין חוק שימור של מספר החורים השחורים, משום שבעת קריסת כוכב מסיבי בסוף חייו נוצר חור שחור אחד מאפס חורים שחורים. אם כך, חור שחור צפוי גם להתפרק. ניתן לחשב את קצב ההתפרקות על ידי השוואה לעצמים אחרים בעלי מסה קרובה שאינם "מוגנים" על ידי חוקי שימור. בדרך זו ניתן להעריך שאורך חייהם עומד על חלקיק שנייה בלבד, אורך זמן שבמהלכו הם לא יצליחו לגרום לנזק כלשהו.

יום חמישי, 12 במרץ 2009

עוד כמה מילים על מעבורת החלל

שתי שאלות שקיבלתי במייל לאחר פרסום הפוסטים אודות אסון הצ'לנג'ר:

1. האם תוכל לתאר את מערכת ההנעה של המעבורת?
מעבורת החלל עצמה מכילה שלושה מנועים רקטיים. הדלק למנועים אלו מסופק ממיכל הדלק החיצוני (צבע חום-כתום בתמונה). המיכל מכיל חמצן נוזלי בחלקו העליון ומימן נוזלי בחלקו התחתון. המימן הוא בעצם הדלק והחמצן (המחמצן) משמש לבעירה של המימן. משני צדי מיכל הדלק נמצאים משגרי דלק מוצק שמספקים את מירב ההנעה בעת ההאצה הראשונית. הם מתנתקים כשתי דקות לאחר ההמראה. אסון הצ'לנג'ר נבע מאיבוד האלסטיות של אטמים שנמצאים במשגרים.

2. למה נדחתה המראת מעבורת החלל דיסקברי היום?
הדחייה ליום ראשון (לפחות) נובעת מדליפת מימן ממיכל הדלק החיצוני. גם כאן, בדומה לאסון הצ'לנג'ר, מדובר בבעיית איטום, אלא שהפעם הבעיה במיכל הדלק החיצוני ולא במשגר הדלק המוצק.

מעבורת החלל אנדוור

יום שני, 9 במרץ 2009

דנידין המודרני

בילדותי אהבתי לקרוא את ספרי דנידין, הילד הרואה ואינו נראה, וחלמתי להיות כמוהו. שאלה שנשאלתי על ידי אורי, תלמיד י"ב מיבנה, החזירה אותי לאותם זיכרונות. אורי שאל אותי אודות חומרים חדשים שיאפשרו ליצור בגדים שקופים, כאלו שמי לובש אותם הופך לבלתי נראה. הוא התעניין באופן הפעולה של אותם חומרים.

ובכן, מדובר במטא-חומרים (metamaterials; ביוונית: "מטא" = "מעבר ל..."), כינוי לחומרים מלאכותיים בעלי תכונות שאין לחומרים רגילים. ייתכן שבעתיד יהיו סוגים שונים של מטא-חומרים, אך כיום הכוונה היא בדרך כלל לחומרים בעלי מקדם שבירה שלילי. מקדם השבירה קובע את כיוון קרני האור שנעות בתוך החומר יחסית לזווית שבה הן חדרו לתוכו. חומרים בעלי מקדם שבירה שלילי מעקמים את קרני האור בצורה שאינה אפשרית בחומרים רגילים (ראו הערה בסוף). מסלול קרני האור יכול, בעצם, לאפשר לנו לראות מקורות אור שנמצאים מאחור, כלומר ניתן להסוות עצם שמכוסה בשכבה עשויה ממטא-חומר.

מסלול הקרניים כשהאור עובר מחומר עם מקדם שבירה חיובי (חומר 1) לחומר עם מקדם שבירה שלילי (חומר 2)

קרינה אלקטרומגנטית היא שם כולל לספקטרום רחב של גלים, החל מגלי רדיו דרך אור נראה וכלה בקרינת גמא. בכל הקשור לתגובה של חומרים לקרינה אלקטרומגנטית, שני הפרמטרים החשובים הם המקדם הדיאלקטרי (permittivity) והמקדם המגנטי (permeability). המקדם הדיאלקטרי קובע את גודלו ואת כיוונו של השדה החשמלי שנוצר בחומר בתגובה להפעלה של שדה חשמלי חיצוני, והמקדם המגנטי קובע את גודלו ואת כיוונו של השדה המגנטי שנוצר בחומר כשמופעל עליו שדה מגנטי חיצוני. הפיזיקאי הרוסי ויקטור וסלגו הראה ב-1967 שמקדם השבירה של חומר בעל מקדם דיאלקטרי ומקדם מגנטי שליליים יהיה שלילי גם כן. חומרים בעלי מקדם דיאלקטרי שלילי קיימים בטבע, למשל מתכות (כל עוד התדר של הקרינה הפוגעת נמוך מהתחום העל-סגול), אבל בכל הנוגע לחומרים בעל מקדם מגנטי שלילי - חומרים טבעיים כאלו טרם התגלו.

בעשור האחרון הצליחו לייצר באופן מלאכותי מטא-חומרים בעלי מקדם מגנטי שלילי. הדבר התאפשר בזכות ההתקדמות הטכנולוגית, יחד עם כמה רעיונות מבריקים. הרעיון המרכזי שעומד בבסיס החומרים החדשים הוא ייצור של מבנים זעירים שחוזרים על עצמם, למשל לולאות זעירות. הקרינה האלקטרומגנטית גורמת להיווצרות זרם בלולאות, והזרמים בתורם מייצרים שדה מגנטי בתוך החומר. כיוונם של הזרמים נקבע בהתאם לחוק לנץ: השדה המגנטי שהם מייצרים תמיד מנוגד לשדה המגנטי החיצוני. היות שהכיוון הפוך, המקדם המגנטי של החומר שלילי.

לסיום, תחזית אישית: אני סבור שמטא-חומרים יתפסו מקום חשוב בחיינו במהלך חמישים השנים הבאות. פריצת הדרך התאורטית התרחשה לפני 40 שנה על ידי וסלגו ופריצת הדרך הטכנולוגית התרחשה בעשור האחרון. בתחילת העשור היו עדיין ויכוחים לגבי תוצאות הניסויים הראשוניים, אך כיום מהימנות הניסויים ברורה, וזה כבר עניין של פיתוח חומרים יעילים לתדרים שונים. אני משער שכבר בעשור הקרוב ייכנסו לשימוש מוצרים עשויים ממטא-חומרים. אמנם "גלימת הארי פוטר" היא מוצר שייקח זמן מה לפתח אותו, אך שימושים אחרים, הן צבאיים והן אזרחיים, צפויים להופיע כבר בעתיד הקרוב. השימושים הצבאיים יתרכזו בכל הקשור להסוואה בתחומים שונים של ספקטרום הקרינה האלקטרומגנטית, כמו למשל הסוואה של מטוסים מפני מכמי"ם. השימוש האזרחי המבטיח ביותר כרגע הוא עדשת-על (Superlens) - עדשה זעירה בעלת רזולוציה גבוהה במיוחד שצפוי לה שימוש נרחב מאוד בכל ענפי מדעי הטבע והטכנולוגיה.

הערה: חוק סנל מסביר מדוע חומר בעל מקדם שבירה שלילי גורם לקרן הנשברת להישאר באותו צד של האנך למשטח המגע עם החומר שממנו היא מגיעה.
לפי חוק סנל היחס בין זווית הפגיעה יחסית לאנך לזווית היציאה יחסית לאנך שווה ליחס ההפוך של מקדמי השבירה:

כאשר מקדם השבירה של החומר אליו חודרת הקרן הוא שלילי, מתקבלת זווית שלילית שהמשמעות שלה היא שהקרן נשארת באותו צד של האנך.

יום שני, 16 בפברואר 2009

קוביות קרח נדבקות ואפקט צ'יריוס

מי שאוהב להוסיף קוביות קרח למשקה בוודאי שם לב שקוביות הקרח נוטות להידבק. קיבלתי מייל מאלה ששואלת למה זה קורה?

מסתבר שההסבר לניסוי הפשוט הזה אינו פשוט כלל.

כשמכניסים שתי קוביות קרח לכוס מים רואים שהקוביות נעות לכיוונים שונים באופן אקראי, אבל אם הקוביות התקרבו זו לזו, הן מתחילות "להימשך" עד שהן מתנגשות ונצמדות האחת לשנייה. המשיכה נובעת ממתח הפנים של המים. מתח הפנים גורם לפני השטח של המים להתנהג כמו משטח גמיש. אם לוחצים עליו בעדינות או מושכים אותו מלמטה הוא שוקע מעט, ואם מושכים אותו מעלה הוא נמתח ויוצר גבעה. גורם נוסף שמשפיע על צורת פני המים ליד עצם שצף על המים הוא מידת המשיכה בין מולקולות המים לאותו עצם (אדהזיה), אבל הצפיפות של העצם היא הגורם המשפיע יותר. אם העצם צף בזכות הצפיפות הנמוכה שלו הוא ימשוך את המים מעלה ותיווצר גבעה של מים סמוך לקו המגע עם העצם, ואם הוא צפוף מהמים וצף רק בזכות מתח הפנים של המים ייווצר שקע סמוך לקו המגע (למשל כשמצליחים לשים נעץ על פני המים).

קוביית קרח במים. רואים את הגבעה שנוצרת בקו המגע בין הקרח לפני המים. מקור: 123rf

קוביות קרח פחות צפופות מהמים, לכן הן יוצרות מעין גבעה סמוך לקו המגע שלהן עם פני המים. קוביות קרח שמתקרבות זו לזו מטפסות במעלה הגבעה הזו עד שהן נצמדות. זה בדיוק מה שקורה בכוס מלאה בדגני בוקר שצפים על פני החלב. יחידות קורנפלקס שקרובות זו לזו ממש נמשכות. קוראים לתופעה "אפקט צ'יריוס".

כעת מתחיל השלב השני: שכבת המים הדקה בין שתי קוביות הקרח מבודדת משאר המים בכוס, ולכן היא מתחילה לקפוא. במילים אחרות, הקור של הקרח גורם לאותה שכבה לקפוא כשאין לה מגע עם המים החמים יחסית בכוס. שכבת המים בין הקוביות שקפאה והפכה לקרח גורמת להן ממש להידבק זו לזו. ניתן לנסות את זה עם שתי קוביות קרח מחוץ למים. מחוץ למקפיא קוביות הקרח מתחילות להפשיר. זו הסיבה לכך שקוביות קרח חלקות למגע. כשמצמידים את הקוביות חזק הן נדבקות משום ששכבת המים ביניהן מבודדת מהאוויר וקופאת.

דרך אגב, איגלו בנוי על אותו עיקרון - המים בין לבני השלג קופאים והלבנים נדבקות זו לזו. בזכות ההדבקה הזו (ובזכות המבנה דמוי הכיפה) האיגלו הוא מבנה יציב ושימושי גם בתנאי מזג אוויר קשים.