‏הצגת רשומות עם תוויות תורת הקוונטים. הצג את כל הרשומות
‏הצגת רשומות עם תוויות תורת הקוונטים. הצג את כל הרשומות

יום שלישי, 11 במאי 2010

התגליות הפיזיקליות של המאה ה-21 - המשך

בפוסט הקודם הצגתי תחזית אישית לגבי התגליות הפיזיקליות הגדולות של המאה ה-21. כעת אני מביא את המשך הפוסט ובו יש ייצוג בולט יותר לאסטרונומיה, לקוסמולוגיה ולאסטרופיזיקה, עם נגיעה קלה גם במדעי החיים.

6. ייצור או גילוי חורים שחורים זעירים ותחילת השימוש בהם כמקורות לייצור אנרגיה. אני חייב להודות שלא הייתי שם את כל כספי על ההימור הזה, כי כרגע אין שום ראיות או רמזים לכך שחורים שחורים כאלו קיימים. מצד שני, תגלית כזו תהיה עצומה בחשיבותה, הן בצד התאורטי והן בצד היישומי. הכוונה לחורים שחורים בגודל תת-פרוטוני שאולי נוצרים בעת פגיעת קרניים קוסמיות באטמוספירה ואולי נוכל אפילו לייצר אותם במאיצי חלקיקים. צריך להדגיש שבשלב זה אין ודאות כי חורים שחורים כה קטנים קיימים. ברור לנו שיש חורים שחורים כוכביים שנוצרו בעת קריסה כבידתית של כוכבים מסיביים מאוד שסיימו את חייהם, אבל לא ידוע מהי המסה המינימלית של חורים שחורים.

לצורך הדיון נניח כי חורים שחורים זעירים, בגודל תת-פרוטוני, קיימים, ונניח שהאנרגיה של הקרינה הקוסמית ואולי אפילו של מאיץ החלקיקים LHC (האנרגיה שלו קטנה מזו של החלקיקים האנרגטיים ביותר בקרינה הקוסמית) או של מאיצים עתידיים תספיק ליצירת חורים שחורים כאלו. במקרה כזה, ובהנחה שהם לא יציבים ומתפרקים במהירות לחלקיקים אחרים, הגילוי של החורים השחורים לא אמור להיות מסובך. ברמה התאורטית הגילוי שלהם יצביע על קיומם של ממדים נוספים מלבד ממד הזמן ושלושת ממדי המרחב המוכרים, וכמו כן הוא יספק אישוש ראשוני לתחזיות מסוימות של תורת המיתרים.

ברמה המעשית נוכל להשתמש בהם לייצור אנרגיה בצורה דומה למה שמתרחש בחורים שחורים גדולים - חומר זורם לכיוון החור השחור, מסתחרר סביבו בדיסקת ספיחה וחלקו לא נכנס פנימה אלא בורח בצורת סילונים מהירים מאוד. כלומר החור השחור מאיץ את החומר שזורם לעברו, וחלקו בורח ולא נבלע בתוכו. הרעיון הוא להשתמש בסילונים הללו על מנת להניע טורבינות זעירות. אני חייב להודות שכרגע זה נשמע קצת כמו מדע בדיוני, אבל מי יודע? טוב, בואו קודם נגלה אותם ונוודא שהם לא יציבים, כלומר לא מסוכנים.

7. הבנת מנגנון היצירה של הגלקסיות ושל החורים השחורים הענקיים שנמצאים במרכזן. הגלקסיות הראשונות נוצרו בשלב מוקדם יחסית של היקום, מאות מיליוני שנה בלבד לאחר המפץ הגדול. מנגנון היצירה שלהן לא ידוע. אנו יודעים דווקא פרטים על היקום הקדום יותר ויכולים אפילו לדעת את פיזור החומר ביקום בן מאות אלפי שנה בעזרת מדידת קרינת הרקע הקוסמית, אבל טרם הצלחנו לצפות במקורות אור מ"התקופה האפלה" ("dark ages") שבין רגע יצירת האטומים (כ-400,000 שנה אחרי המפץ הגדול) ובין יצירת הגלקסיות הראשונות.

הבנת תהליך היווצרות הגלקסיות יחייב פיתוח תאוריה מספקת ומציאת דרכים לבדוק אותה בתצפית לעבר אותה תקופה אפלה, כלומר לעבר עצמים רחוקים מאוד. בהקשר זה מעניין להבין איך ומתי התפתח החור השחור הענקי שנמצא כנראה במרכזה של כל גלקסיה. זה קרה די בהתחלה, זמן קצר יחסית אחרי שהגלקסיה נוצרה או אפילו במקביל ליצירתה, אבל איך הוא בדיוק נוצר? (האם זו קריסה כבידתית?) והאם יש לו קשר ליצירת הגלקסיה שבה הוא יושב ולהתפתחות שלה? אלו שאלות מסקרנות במיוחד.

8. הבנת הרכב היקום. המדע נמצא במצב מוזר: אנחנו יודעים שחומר אפל ואנרגיה אפלה ממלאים את היקום, בכמות הרבה יותר גדולה מהחומר הרגיל המוכר לנו מתצפיות ישירות בכוכבים ובגלקסיות, אבל אין לנו מושג מהו אותו חומר אפל ומהי אותה אנרגיה אפלה. הראיות לקיומם מוצקות למדי. הגלקסיות מסתובבות מהר מכפי שהיינו מצפים אם היה בהם רק החומר הרגיל שאנו צופים בו, ומכאן ניתן להסיק לגבי קיומו של חומר אפל. מהו אותו חומר אפל? אנו לא יודעים בוודאות, אבל יש מועמדים לא רעים, ויכול להיות שבניסויי מאיצי חלקיקים נצליח לייצר חומר אפל באופן מבוקר ולחקור את תכונותיו, כך שיש סיכוי...

כעת לאנרגיה אפלה: תצפיות על גלקסיות רחוקות הראו שהיקום מאיץ את התפשטותו, ולכן לא יכול להיות שכבידה היא הכוח היחיד שקובע את המבנה של היקום. הרי הכבידה היא כוח משיכה והיא נוטה להאט את קצב ההתפשטות. המסקנה היא שיש ביקום מין אנטי-גרוויטציה, והיא זו שמכונה אנרגיה אפלה. מהי אותה אנרגיה אפלה? קצה החוט היחיד שיש לנו הוא קבוע שאיינשטיין הכניס למשוואות תורת היחסות הכללית - הקבוע הקוסמולוגי. אבל גם אם יתברר שהאנרגיה האפלה מתאימה בדיוק להשפעה של אותו קבוע, ואיינשטיין צדק למרות שחשב שטעה, עדיין יש צורך להבין מהי אותה אנרגיה ומנין נובעות תכונותיה המוזרות, כמו למשל הצפיפות הבלתי משתנה שלה ביקום מתרחב המחייבת עלייה בכמות הכוללת של האנרגיה האפלה לאורך זמן.

9. פיתוח תורה מאוחדת של כבידה ותורת הקוונטים. תורת הקוונטים נבדקה באלפי ניסויים ונמצאה מדויקת להפליא - נראה שהיא מסבירה בצורה מצוינת תופעות מיקרוסקופיות. מצד שני, תורת היחסות של איינשטיין מסבירה בצורה מצוינת תופעות הקשורות לכוח הכבידה שבדרך כלל באות לידי ביטוי במערכות גדולות. קשה יותר לבדוק את תורת היחסות הכללית, אך בכל זאת היא נבדקה במספר ניסויים בלתי תלויים ונמצאה מדויקת גם כן. הבעיה היא שיש סתירה בין תורת היחסות לתורת הקוונטים שמתבטאת בפרדוקס EPR: תורת הקוונטים מאפשרת תופעות שמתרחשות באופן מיידי במרחקים גדולים, ואילו תורת היחסות לא מאפשרת תופעות שכאלו.

תורת כבידה קוונטית אמורה לתת ניסוח שמתאים ליחסות ולקוונטים ובכך לאפשר את איחודן. באותה הזדמנות היא צריכה להסביר מדוע כוח הכבידה כה חלש יחסית לכוחות יסוד אחרים כמו הכוח האלקטרומגנטי. יש כמה מועמדים לתורה מאוחדת, למשל תורת המיתרים, אבל צריך גם לבדוק אותן בניסוי, וזה טרם נעשה. בכל הקשור לתורת המיתרים - עדיין לא נמצא לה בדל של ראיה ניסיונית משום שרוב התופעות שהיא חוזה נצפות באנרגיות גבוהות בלבד, אבל אני מאמין שניתן לחשוב על ניסויים מתוחכמים שיאפשרו בדיקה שלה גם באנרגיות נמוכות, ובמהלך המאה הנוכחית כבר נדע אם היא "הגביע הקדוש" של הפיזיקה או שאלפי מדענים בזבזו עליה את זמנם.

10. פיתוח שיטות מתמטיות ופיזיקליות לניתוח מערכות מורכבות, כמו למשל מערכות ביולוגיות. הפיזיקה נוטה פעמים רבות לתת הסברים פשוטים ולהשתמש במשוואות בסיסיות פשוטות, וזה מתכון מוצלח מאוד לתיאור חוקי היסוד של הטבע. אבל מערכות רבות אינן פשוטות, ולצורך הבנתן יש צורך בכלים אחרים, שרובם עדיין לא קיימים. מערכת מורכבת מכילה מספר גדול יחסית של גורמים שמשפיעים זה על זה, וכתוצאה מכך ההתפתחות שלה בזמן קשה לחיזוי.

אם ההתפתחות לאורך זמן תלויה מאוד בתנאי ההתחלה אז המערכת נקראת כאוטית. מערכת מזג האוויר היא דוגמה למערכת כאוטית. למעשה, הכאוטיות שלה מסבירה למה קשה מאוד לתת תחזית מדויקת ליותר מארבעה ימים קדימה. עם זאת, מערכות מורכבות אינן בהכרח כאוטיות, וכאלו הן בדרך כלל המערכות הביולוגיות. מאפיין מובהק של המערכות הביולוגיות הוא קיום מערכת סבוכה של משובים המספקים בקרה על התהליכים השונים. לדעתי, פיתוח כלים להתמודדות עם מערכות מורכבות, משימה מסובכת לכל הדעות, יאפשר פריצת דרך בביולוגיה בכלל ובהבנת האבולוציה בפרט.

    לסיכום, במבט כולל על מה שכתבתי ברשומה הזאת ובקודמת, אני מודה שכל זה קצת יומרני והמטרות גדולות. רשמתי עשר מטרות שנראות לי גדולות וחשובות מהיבטים שונים. בדרך לשם יהיו המון גילויים ופיתוחים קטנים ובינוניים, כמו למשל הבנה טובה יותר של תכונות חומרים, גילוי חלקיקים חדשים (בוזון היגס, חלקיקים סופר-סימטריים), גילוי גלי כבידה, פיתוחים בתחום הננו-טכנולוגיה ועוד הרבה. שווה לעקוב.

      יום שני, 10 במאי 2010

      התגליות הפיזיקליות של המאה ה-21

      בפוסט הקודם סיפרתי על המאמר שכתבתי בזמנו אודות התגליות הגדולות בכל הזמנים בפיזיקה ובאסטרונומיה. נזכרתי בו כשמצאתי מסמך במחשב אודות גילויים עתידיים. לא זכורה לי הסיבה המדויקת שלשמה הכנתי אותו, אבל לפי מצבו מובן לי שהוא נשאר בגדר טיוטה ראשונית. הנה המסמך לאחר שהשקעתי בו עוד כמה שעות היום וביצעתי הרחבות קלות. אין ספק שכל אחד מהנושאים המופיעים בו ראוי להרחבה משמעותית יותר. בינתיים אני מפרסם אותו במצב גולמי למדי, אבל מבטיח להרחיב ולפרט בעתיד. אם כן, זו רשימת התחזיות שלי לגבי גילויים בפיזיקה ובאסטרונומיה (וגם קצת טכנולוגיה) במאה ה-21, לא לפי סדר חשיבות:

      1. מציאת הסבר אינטואיטיבי לעקרונות תורת הקוונטים. ניסויים רבים מאוד מאששים את תורת הקוונטים וברור לנו שזו תאוריה מדויקת במיוחד. עם זאת, שלא כמו בענפי פיזיקה אחרים, עקרונות תורת הקוונטים קשים להבנה. כדוגמה ניתן להביא את בעיית המדידה - בעת ביצוע מדידה מערכת יכולה לעבור ממצב המהווה סכום של מצבים שונים (סופרפוזיציה) למצב בודד המתאים לערך הנמדד (מצב עצמי המתאים לערך עצמי). אומרים שבתהליך המדידה מתרחשת קריסה של פונקציית הגל של המערכת, אך מנגנון הקריסה וחלקו של המודד בתהליך זה אינם ניתנים להבנה אינטואיטיבית בכלים שיש לנו היום. אני מאמין שהבנה אינטואיטיבית שכזו תאפשר את הבנת פעולתה של תורת הקוונטים גם במערכות גדולות שמכילות מספר גדול של אטומים או מולקולות, ובאותה הזדמנות נקבל פתרון לפרדוקס החתול של שרדינגר.

      2. פיתוח מחשבים קוונטיים גדולים. המחשבים הדיגיטליים הרגילים, המוכרים לכולנו, מבוססים על ביטים, כלומר יחידת הזיכרון הבסיסית יכולה להימצא באחד משני מצבים - 0 או 1. מחשב קוונטי מבוסס על קיוביטים (ביטים קוונטיים) שכל אחד מהם יכול להימצא במצב 0 או 1 וגם בסופרפוזיציה של שני המצבים הללו. התוצאה היא שאוסף של n קיוביטים נמצא ב-2 בחזקת n מצבים בו-זמנית, וניתן לבצע פעולות על כל המצבים הללו במקביל. הדבר יאפשר ייצור של מחשבים מהירים מאוד שגודלם הפיזי קטן. מחשבים קוונטיים קטנים, שיש בהם מספר בודד של קיוביטים כבר יוצרו, אבל ייקח עוד זמן עד שיפותח מחשב קוונטי שיחליף את המחשב הביתי ואף יעלה עליו. זו תהיה קפיצת מדרגה בכל הנוגע ליכולת החישוב ולמהירות החישוב, מה שישמח במיוחד את אנשי התוכנה, החוקרים ויותר מכולם את ה...גיימרים.

      3. פיתוחים מגוונים בתחום החומרים. למשל, ייצור חלליות מחומרים קלים, חזקים ובעלי יכולת לחסום קרינה, שיהפכו את המסע בחלל למשימה בטוחה, פשוטה ויומיומית. אני סבור שהפיתוחים בתחום החומרים ישפיעו על חיינו כמעט בכל אספקט, וכך למשל כבר בעשור הקרוב נראה טלפונים ניידים בעלי צורה משתנה או שנקנה בגדים שניתן לשנות בהם את המידות והצבעים בהתאם לצורך. גם מטא-חומרים מהווים כר פורה לפיתוחים עתידיים, ולא רחוק היום שבו אפשר יהיה לקנות לפורים גלימת הארי פוטר ההופכת את הלובש אותה לבלתי נראה.

      4. הבנת מנגנון הפעולה של מוליכי-על הפועלים בטמפרטורות גבוהות וייצור מוליכי-על הפועלים בטמפרטורות קרובות ל-0 מעלות צלזיוס. מוליכי-על הם חומרים שמשנים באופן חד את תכונותיהם בטמפרטורות נמוכות. ההתנגדות החשמלית שלהם אפסית ויש להם עוד כמה תכונות חשמליות ומגנטיות ייחודיות. מרבית מוליכי-העל פועלים בטמפ' קרובות לאפס המוחלט (273.15- מעלות צלזיוס), ואת אופן פעולתם אנו יודעים להסביר באמצעות תאוריה הקרויה BCS על שם מגליה. בנוסף להם התגלו מוליכי-על שפועלים בטמפ' של עשרות מעלות מעל האפס המוחלט, אולם אופן פעולתם לא מובן בשלב זה. לדעתי, הבנה כזו היא משימה תאורטית אפשרית, והיא תסלול את הדרך לייצור של מוליכי-על בטמפ' הרבה יותר גבוהות, קרוב ל-0 מעלות צלזיוס. מוליכי-על כאלו יוכלו לשמש למגוון מטרות, כמו למשל בניית רשת חשמל כלל-עולמית שאין בה איבודי אנרגיה. אני הולך להשתמש בהם למטרה חשובה עוד יותר: הדגמות פיזיקליות משעשעות...

      5. הפיכת היתוך גרעיני לשיטה מרכזית לייצור אנרגיה. כ-85% מהאנרגיה המיוצרת כיום מבוססת על שריפת דלקי מאובנים. לשיטה זו מספר חסרונות: השריפה גורמת לזיהום קרקע ואוויר (מלבד גז טבעי), נפלט פחמן דו-חמצני שעלול להגביר את אפקט החממה, המשאבים ייגמרו יום אחד ועד אז אנו נהיה תלויים במדינות עשירות במחצבי דלקי מאובנים. בהקשר זה, רצוי שהשיטות החלופיות שיכנסו לשימוש יהיו נקיות, מתחדשות וזולות. אנרגיה גרעינית המבוססת על ביקוע של גרעינים כבדים, כמו אורניום, היא פתרון חלקי, משום שהיא מותירה תוצרי לוואי רדיואקטיביים. אני מאמין שאנרגיית רוח, אנרגיה סולארית, אנרגיה הידרואלקטרית, אנרגיה כחולה ושיטות נקיות נוספות יתפסו מקום רב יותר בשוק האנרגיה של המאה ה-21.

      אבל ההבטחה האמיתית היא פיתוח כורי היתוך גרעיני שמאפשרים יצירת אנרגיה כשגרעינים של אטומים קלים (למשל איזוטופים של מימן) נפגשים ומתאחדים לגרעין כבד יותר. תהליך כזה מתרחש בשמש ובכוכבים אחרים. על מנת שהגרעינים יתקרבו למרחק מספיק קטן זה מזה, כך שיתרחש היתוך, יש צורך להתגבר על הדחייה החשמלית ביניהם (הם טעונים במטען חיובי). לשם כך יש להקנות להם מהירות גבוהה, כלומר להשתמש במתקן שבו הגרעינים מחוממים לטמפ' גבוהה מאוד. עד היום לא הצליחו לבנות כור היתוך שמפיק יותר חשמל ממה שמשקיעים בו, אבל בעשורים הקרובים המצב עשוי להשתנות. הכור הניסיוני ITER צפוי להיות השלב הראשון בדרך לייצור מסחרי של אנרגיית היתוך גרעיני. אבל זה ייקח עוד זמן, והחבר'ה הרציניים ולמודי ההבטחות בתחום זה משערים שלא נראה כורי היתוך מסחריים לפני 2050.
        המשך ברשומה הבאה...

        יום רביעי, 18 בפברואר 2009

        האם קיים אפקט קזימיר בימאות?

        בפוסט הקודם כתבתי על קוביות קרח ועל אפקט צ'יריוס. בתגובה הפנתה אותי אלה, שגם שאלה את השאלה המקורית, לערך אודות אפקט צ'יריוס בוויקיפדיה. שם הופתעתי לקרוא על כוח הנובע מ"המקבילה הימאית של אפקט קזימיר" שפועל כביכול בין עצמים בנוזל. זה נראה לי מוזר משום שהכוח הנובע מאפקט קזימיר חלש מאוד ויש לו משמעות רק עבור עצמים זעירים, בגודל ננומטרי (מיליארדית המטר) - הוא בוודאי לא מתחרה עם אפקט צ'יריוס. מה עוד שאפקט קזימיר לא קשור כלל לנוזלים. מצאתי אזכור של אותה מקבילה ימאית מסתורית גם בערך הוויקיפדי על אפקט קזימיר בעברית וגם בגרסה מוקדמת של הערך באנגלית (מאי 2007). אבל לפני שאני מגיע למקבילה הימאית, אני רוצה לעסוק באפקט קזימיר עצמו.

        "אפקט קזימיר בימאות" - האם קיים כוח מסתורי שמושך ספינות קרובות זו לזו? מקור: Nature

        אפקט קזימיר מתאר כוח מיוחד שפועל בין גופים מוליכים, למשל זוג לוחות מוליכים שאינם טעונים במטען חשמלי. מדובר בכוח משיכה שפועל בין הלוחות אפילו אם הם נמצאים בריק (ואקום), כלומר לא פועל עליהם לחץ אוויר או לחץ נוזל. אין הכוונה לכוח המשיכה הכבידתי הפועל בין כל שני גופים, וגם לא לכוח החשמלי הפועל בין גופים טעונים, אלא לכוח אחר לגמרי. הלחץ הנובע מאפקט קזימיר (לחץ הוא כוח חלקי שטח) גדל מאוד כשהמרחק בין הלוחות קטן, ולכן הלחץ משמעותי רק כשהלוחות קרובים מאוד האחד לשני.

        ההסבר לאפקט קזימיר איננו פשוט. הוא מבוסס על תורת הקוונטים, או ליתר דיוק על תורת השדות הקוונטית שלוקחת בחשבון גם את תורת היחסות הפרטית של איינשטיין. מושג מרכזי בתורת השדות הקוונטית הוא קיומם של חלקיקים וירטואליים. אלו הם חלקיקים קצרי חיים שנוצרים ונעלמים בכל מקום, אפילו בריק. לא ניתן לגלות אותם ישירות, אבל רואים את ההשפעה שלהם בכל תהליך שמעורבים בו חלקיקים יסודיים. כאמור, אותם חלקיקים וירטואליים נוצרים ונעלמים גם בריק, ולכן הם פועלים על שני הלוחות המוליכים שלנו. הנקודה החשובה מבחינתנו היא שהכוח שהם מפעילים על הלוחות כלפי חוץ קטן מהכוח שהם מפעילים על הלוחות כלפי פנים, ולכן נוצר כוח משיכה בין הלוחות. ההבדל בכוחות נובע מהעובדה שבין הלוחות יש העדפה לחלקיקים מסוימים בלבד, ואילו מחוץ ללוחות אין העדפה, כלומר מחוץ ללוחות יש יותר חלקיקים.


        אפקט קזימיר: הלחץ החיצוני שדוחף את הלוחות זה לזה גדול מהלחץ ביניהם שדוחה אותם האחד מהשני. מקור: Wikimedia

        באיור כל גל מייצג חלקיק - ניתן לראות שבין הלוחות יש פחות גלים מאשר מחוץ ללוחות. זה דומה קצת לגלי קול בתוך חליל - אורך החליל קובע את תדר התהודה וגלי הקול שנעים בתוך החליל יתאימו רק לתדר התהודה או לכפולות שלו.

        מאז שהנדריק קזימיר חזה את האפקט ב-1948 הצליחו מדענים למדוד אותו בעזרת כמה וכמה ניסויים. בימים אלו העניין בו גובר, הן בהיבט התאורטי והן בהיבט הניסיוני, וזאת משום שיכולה להיות לו חשיבות רבה ביישומים ננוטכנולוגיים.

        ומה לגבי המקבילה הימאית של אפקט קזימיר? מסתבר שבשנת 1996 פרסם פיזיקאי הולנדי מאמר שבו נטען שאפקט קזימיר דומה למשיכה בין ספינות קרובות בים גלי ללא רוח, תופעה שתוארה בספר צרפתי משנת 1836 (P. C. Caussée, The Album of the Mariner).

        האמנם אפקט קזימיר מתרחש בקנה מידה גדול עקב פעולתם של גלי הים? זה נשמע רומנטי ומקסים, ואכן פיזיקאים רבים התפתו להאמין בכך או לכל הפחות לא לבדוק את הפרטים. בסופו של דבר, לא קל למצוא מישהו שמבין מספיק גם בימאות וגם בפיזיקה על מנת לבדוק את ההקבלה הזו לעומק. למרבה המזל, פבריציו פינטו, פיזיקאי שהוא גם ימאי נלהב וגם שונא מיתוסים, החליט לבדוק על מה מדובר וקבע בביטחון שמדובר בשטות גמורה. הוא טוען בכתב העת נייצ'ר שלא רק שהפיזיקאי ההולנדי לא הבין בכלל את הספר הצרפתי, אלא שגם הסופר הצרפתי טעה וכוח כזה בין ספינות איננו קיים כלל ועיקר. הבעיה היא שהמקבילה הימאית כבר החלה להופיע כאנלוגיה תקפה באתרי אינטרנט ובמאמרים (אפילו בנייצ'ר) ולא יהיה קל לעקור אותה מהשורש.

        התצלום הבא, שנעשה באמצעות מיקרוסקופ אלקטרונים, מתאר מערכת למדידת אפקט קזימיר המבוססת על מיקרוסקופ כוח אטומי. מיקרוסקופ כוח אטומי מסוגל למדוד את המיקום המדויק של הכדור המתכתי הנראה בתצלום בשעה שמקרבים אותו ללוח מתכת, וכך לגלות תנועות זעירות של הכדור הנובעות מקיומו של כוח קזימיר.

        מערכת למדידת אפקט קזימיר המבוססת על מיקרוסקופ כוח אטומי. מקור: APOD